Wolfscript: An Educational
Programming Language for Android

Erick Bauman

A Thesis Submitted in Partial Fulfillment of the Requirements for
Graduation with Honors in Computer Science

Department of Mathematics and Computer Science
Southwestern University
Georgetown, TX 78626

May 6, 2013

Approved
Dr. Richard Denman
Honors Advisor
Mathematics and Computer Science

Approved
Dr. Barbara Anthony
Committee Member

Mathematics and Computer Science

Approved

Mr. Andy Ross
Committee Member
Economics and Business

Wolfscript: An Educational
Programming Language for Android

Erick Bauman

May 6, 2013

Department of Mathematics and Computer Science
Southwestern University
Georgetown, TX 78626

Thesis Committee:
Dr. Richard Denman
Honors Advisor
Mathematics and Computer Science

Dr. Barbara Anthony
Committee Member
Mathematics and Computer Science

Mr. Andy Ross
Committee Member
Economics and Business

Copyright (©2013 Erick Bauman

Abstract

Wolfscript is an educational programming language designed to be easily
learned by anyone proficient with a scientific calculator. The key focus of the
language is simplicity joined with the flexibility of other high-level languages.
There are only two data types in Wolfscript so far: numbers and lists of num-
bers (arrays). Numbers are arbitrary-precision; all numbers are stored as a
numerator over a denominator, so all rational numbers can theoretically be
represented with no overflow. Strings are represented as arrays of characters,
which are stored as numbers. Wolfscript contains all the features one ex-
pects from a procedural programming language: if/elseif/else, for /while, and
methods. The syntax and IDE are designed for ease of use on any Android
phone or tablet. This paper will cover the design philosophy of the language
and the IDE, as well as some of the technical details.

Contents

oliscript

(I _Introduction|

(1.1 Why Woltscript?’|

(1.2 Betore Woltscript|

2 The Interpreter|

2.1 Overview|

[2.2 Calculator Stage|

[2.3 Variables Stage

2.4 Arrays Stage

[2.5 Control Flow Stage|

2.6 Methods Stage|

[2.7 Future Stages|

[B_The IDEl

[3.1 Design Philosophy]|

10
10
11
13
14

15
15
16
17

18
18
19

20
21

(1.2.2 Assignments| 23

[1.2.3 Arrays (Lists of Numbers)[. 24

[1.2.4 Equality and Booleans| 26

(1.3 Simple Programs| 27
(1.3.1 Writing Your First Program| 27

(1.3.2 Input and Output|{. 28

133 Comments 28

(L34 If Statementslo 29

1.3.5 00PS| « « v e 32

1.3.6 Methodsl 34

(1.3.7 Arrays Revisited| 36

2 Beginner’s Guide Appendices| 38
[2.1 Sample Answers to kxercises|. 38
2.2 Woliscript Keywords|, 39
2.3 Woliscript Functions| 41
2.4 Woltscript Exceptions|. 42
MIT Bibliography] 43

Part 1

Wolfscript

Chapter 1

Introduction

1.1 Why Wolfscript?

Prior to starting work on Wolfscript, I had seen several examples of pro-
gramming languages designed exclusively for educational purposes. While
each language had its own advantages, I felt there was a void that could be
filled with a new language.

While I intended Wolfscript to be educational, I wanted it to be similar
in at least its syntax to actual languages in use. Two similar visual program-
ming languages are Alice [7] and Scratch [3|, which are intended to teach
programming to younger students and are substantially different from most
languages taught in upper-level computer science courses. While ideal for
teaching young children and people not intending to advance in computer
science, the visual environments of Alice and Scratch, along with the inflex-
ible code blocks, make them insufficient for a smooth transition into more
"serious" languages.

Another programming environment, Greenfoot [6], allows students to eas-
ily write 2D games and applications using Java. I was introduced to Green-
foot in high school, and T considered it to be very good at teaching concepts
and allowing students to put together satisfying projects. However, it still
uses a full-featured programming language, requiring students to learn its
conventions before they are comfortable using it. Therefore it is better to
use Greenfoot after spending some time learning basic programming con-
cepts.

I hoped to fill the gap between these two types of educational environ-

ments by providing a language similar to current popular languages while
keeping it simple and easy to approach. I aimed to make something to teach
concepts in a more traditional way than Alice or Scratch, but in an easier
way than using a professional-level development language.

In addition, I sought to make programming possible literally anywhere
a person might be. By placing a development environment on a phone and
tablet, one can program on the bus, while taking a walk, or in between
classes. Several applications for writing code on mobile devices do exist, but
almost all of them rely on servers to do the actual compilation. While this
may change, it is still a fact that phones and tablets rely on an internet con-
nection for much of their functionality. Since Wolfscript’s interpreter runs on
the device, a user can run their applications with zero reliance on any other
device or network.

I also hoped to build a development environment that would make writ-
ing code on a small touchscreen device a tolerable task. Using a simple text
editor to write code on a tiny touchscreen is an exercise in frustration, and
I knew it could be made easier with the right interface. The syntax of the
language was also designed with easy typing in mind, shunning as many char-
acters as possible that were hard to type on a mobile keyboard.

For the effort required to build an interpreter in two different languages,
I felt it was best not to attempt to build Wolfscript for multiple mobile plat-
forms. I chose Android as the mobile environment on which to build Wolf-
script for two reasons. First, I was interested in contributing to a promising
new mobile operating system, and since Android applications are written in
what is essentially Java, I had experience that would allow for an easy tran-
sition. I had no interest in learning Objective C specifically for developing
iOS applications. Second, I preferred Google’s strategy with Android’s mar-
ketplace to Apple’s iPhone App Store because of Google’s lower entry fee
and more open attitude to developers.

The name "Wolfscript" comes from my middle name, Wolff, and the fact
that it is an interpreted language like most scripting languages. I needed a
catchy name, and the language spent a long time nameless while I contem-
plated the right name to give it.

1.2 Before Wolfscript

Before it had been decided that this project was going to be an honors topic, I
spent several independent studies investigating the development of Android
applications [2] [4] [5]. The first independent study, inspired by a Linear
Algebra class, yielded a simple phone application called "Elementary Row
Operations" that used elementary row operations to reduce matrices and
find determinants and inverses. This application inspired the first ideas that
eventually became Wolfscript.

After that simple application to modify matrices, I wanted more powerful
matrix-modifying capabilities on my phone, similar to Matlab or Mathemat-
ica. However, I wanted something with a more feasible scope, though still
with the capability to understand complicated mathematical expressions.
The Android application allowed numbers to be entered as either fractions
or decimals, and I wanted any future project to expand on that flexibility.
Since [was familiar with graphing calculators and assumed that many people
had at least a basic understanding of calculators, it made sense to begin there.

The first portion of what would become Wolfscript was the calculator.
In it, T incorporated the convention from graphing calculators of keeping an
“ans” variable, which contains the value of the last calculation performed.
This feature remains in the language even now. However, as I progressed on
the language, I shifted my focus away from programmable calculators, since I
never intended to use GOTOs as in TT Basic. Instead I took inspiration from
Java and scripting languages such as Python and Ruby. I adapted syntax
from those languages due to their simplicity and clarity. The process of
adding these language features lasted a long time, and specific details changed
as I learned more. After I finished adding those features, however, Wolfscript
mostly matched the form that it is in now. Since then I have focused on topics
other than its architecture, such as finding faults and developing the IDE.

Chapter 2

The Interpreter

2.1 Overview

The interpreter portion of this project is comprised of the code that takes
lines of Wolfscript code and executes them and the environment that the
lines of Wolfscript code affect. For example, the interpreter maintains a list
of variables, and assignments will change this list. The interpreter can exist
completely independently of the IDE, and when it was originally written, it
ran on Java in the command line. I still maintain an independent version of

the interpreter that runs on any Java-enabled computer and uses standard
console 1/0.

The computer version of the interpreter is used for testing purposes as op-
posed to using the Android IDE because the command line is a faster, more
flexible way to run files. This version also has a simple test suite, which takes
a list of files to run, a file of simulated console input, and a file of correct
console output. When the tests are run, the program compares the actual
output with the correct output and displays an error if the two mismatch.

Since a good programming language needs useful, intuitive error han-
dling, T have incorporated exceptions into Wolfscript that produce a stack
trace when encountered. However, the interpreter currently has a limited set
of exceptions that it recognizes, and it frequently has to resort to a default
catchall exception. The system of exceptions needs to be expanded greatly
to be useful.

As T developed Wolfscript, I decided to build each feature of the inter-
preter in stages, attempting to ensure that each stage was bug-free before

proceeding to the next stage. I started with the calculator stage, which pro-
vided the core of the language. I then created the interpreter itself and added
variables. After variables were added, I created a second variable type, ar-
rays. Once variables of both types could be defined, I added control flow
statements to add the capabilities of an imperative programming language.
Finally T added methods to incorporate procedural programming concepts.

2.2 Calculator Stage

The very first stage of the project was to build the calculator, which was to
be the base level of all calculations as the language developed. I designed
it to work as a command-line calculator, accepting input one line at a time
and immediately returning the output of each line after it was submitted. It
worked on desktop computers using Java, and it had no Android-related code.

The calculator operates in infix notation, and it works by maintaining
two stacks, one for values and the other for operators. Operators, including
parentheses, are arranged by precedence and therefore complicated expres-
sions are allowed. The original version had operators that some programming
languages only implement in methods, such as factorial, modulus, and ex-
ponents. Later in development, I added more operators such as logical and,
logical or, equality, inequality, and comparison. A full list of operators is in
the Beginner’s Guide.

The calculator also has the unusual feature of allowing implied multi-
plication, which means a user is allowed to omit the multiplication symbol
when using parentheses (2(4) vs. 2*(4)). This feature may eventually be
eliminated, as it causes ambiguity in method calls, but for now it remains
because when I added it I felt that the flexibility and intuitiveness of the
calculator was paramount. Now, although this makes entering mathematical
expressions very intuitive, it can cause confusion with method calls, which
have a similar appearance.

Potentially the most important feature of the calculator is the way num-
bers are stored. All values are stored internally as fractions, using a custom-
written BigFraction class to store Java Biglntegers as the numerator and
denominator of the fraction. Every time a fraction is set, it is reduced using
Euclid’s algorithm to find the greatest common denominator, meaning that
all fractions are always stored fully reduced. Using fractions allows for ar-
bitrary precision, restricted only by the physical limits of the device. This

means that the result of all basic operations (except for fractional exponents)
will contain the exact result of the calculation with no loss in precision.

2.3 Variables Stage

In the variables stage, I added the ability to store values in variables. At
this time, variables were only numerical, as arrays did not exist. In keeping
with the focus on the calculator, I added an “ans” variable, which automat-
ically received the value of the last calculation performed. All variables are
dynamically typed; no type is declared, and a variable is only created when
a value is assigned to it. The number of statement types was expanded to
two: expressions and assignments. An expression only assigns a value to
“ans,” while an assignment either creates a new variable or sets the value of
an existing variable.

Also added in this stage was the project’s interpreter component, which
processes all statements and replaces all variables before passing expressions
to the calculator component. It stores a sorted list, from shortest to longest,
of all the variables. This is because the first way that variables were replaced
was by traversing the list and replacing each variable as it was found. When
a new variable is created, it is inserted into the sorted list of variables in the
correct location.

After the insertion of the interpreter, statements gained the ability to
change the state of the interpreter object, and the interpreter accepted only
one statement at a time. Every statement returned a value so that “ans”
would always contain the previous calculation. Assignment returned the
value assigned to the variable, so after any assignment, “ans” is equal to the
variable that has just been set.

I copied the code into an Android project and added a prototype user
interface that allowed me to demonstrate that the calculator worked on An-
droid devices. However, it remained a side project and was never incorpo-
rated back into the main project.

2.4 Arrays Stage

I added arrays to the interpreter as a second variable type, distinct from
numbers. Arrays and numbers are still the only two variable types in the

10

language, and the only other type I intend to add is objects. Since variables
are dynamically typed, a variable name can refer to either type over the
course of a running program.

Arrays are variable length, and they are initialized with a set of initial
values. An array can be initialized with zero initial values, but nothing can
be retrieved from it until values are added. If a value is assigned to a non-
negative index outside the range of the array, the array is expanded to that
index and any intervening indices have their values filled with zero. Arrays
can contain a mix of numbers and other arrays, making multidimensional
and ragged arrays possible.

Arrays are implemented in a custom Array class that uses a Java Ar-
rayList to store values of type Variable. The Variable class is a wrapper for
both numbers and arrays, allowing both to be stored in the ArrayList. The
interpreter adds all needed zeros when a value is assigned outside the array’s
size.

When a user attempts to access nested arrays inside an array, the recur-
sive replacement of values requires that there be a temporary variable that
represents the nameless arrays inside an array. Since expressions are stored
as Strings even partway through being interpreted, an actual variable name
needs to be placed into the string to represent the temporary variable. The
variable name is currently called “NAMELESS,” and if a user defines a vari-
able by the same name, it will be overwritten whenever they access nested
arrays. [intend to avoid this problem in a future update when I refactor the
interpreter, but for now this is an unfortunate quirk of the language.

2.5 Control Flow Stage

The control flow stage took the interpreter from behaving like a calculator
into becoming a Turing-complete programming language. This stage added
statements that altered the behavior of the interpreter by allowing lines of
code to run only if a condition was met. Prior to this, every statement was
guaranteed to execute when it was passed to the interpreter.

The three statements added were “if” statements, “while” loops, and “for”
loops. They require no parentheses or curly braces. However, they must
be terminated with an “end” statement. I decided not to use whitespace to
determine scope because the interpreter does not look at the overall program

11

but rather at individual statements, and measuring indentation in some-
thing like the interactive terminal seemed unintuitive. Instead, whitespace
is trimmed by the interpreter, so indentation is irrelevant to proper operation.

When I added these statements, I had to consider the issue of scope. For
example, if a variable is created inside an if statement, it must cease to ex-
ist when the if statement is exited. In order to do this, every control flow
statement creates a new instance of the interpreter, which has its own set of
variables.

When a program is run, a main interpreter is created, which exists for
the entire duration of the program’s run. When it encounters a control
flow statement that evaluates to true, it creates a sub-interpreter and passes
all statements that it receives straight to the sub-interpreter until the sub-
interpreter encounters an “end” statement and notifies its parent. The main
interpreter then destroys the sub-interpreter and takes back control until an-
other control flow statement is encountered. If a sub-interpreter encounters a
control flow statement while it is in control, it creates its own sub-interpreter.
This happens recursively.

If a control flow statement evaluates to false, the active interpreter will
discard the subsequent lines it receives while still checking for control flow
statements. It only does this so that it can count how many interpreter levels
the code could have descended to. This way, it knows which “end” statements
to ignore until it encounters the one matching the original control flow state-
ment.

Loops have an additional step. The first time the loop runs it acts mostly
like an if statement. However, as the interpreter receives each line, it adds
it to a String containing all the lines in the statement’s code block. Upon
reaching the end of the first iteration of the loop, the interpreter checks the
original condition again and runs the stored code as long as the condition
remains true. This means that when any parents of the interpreter pass the
"end" statement for the loop to the interpreter, they must wait for all it-
erations after the first one to complete before regaining control. Therefore,
all the lines from a program are only given to the interpreter once. Any
time that any code is run after the first time it is received, an interpreter is
re-running stored code.

For loops have two special statements. A while loop only has a condition,
but a for loop has code that it runs the first time (the initialization code),

12

the condition, and the update (the code it runs at the end of each loop).

As I implemented loops, I originally intended every statement’s return
value to somehow "bubble up" to the top. Every type of statement prior to
loops could easily display its return value in the interactive terminal because
it was simply the value of a single variable. However, loops could gener-
ate huge amounts of return values; a loop with a million iterations and two
lines would produce 2 million return values. This proved incredibly slow, so
instead I set the return value for loops to be "Return value is too big" as
a temporary placeholder. Eventually I changed it to an empty String, and
if T refactor the interpreter in the future, I intend to make it return some
indication of success, such as 1.

Around this time, I added input and output statements, which allowed
for interactive programs to be written. Prior to this, the only way to interact
with the interpreter was via the interactive terminal, which accepted input
as lines to be executed by the interpreter. However, adding input and output
statements allowed programs to be run from files; the input from the file was
the code to be executed, and the only thing the user typed or saw was via
“in()” or “out” statements.

2.6 Methods Stage

Methods behave similarly to control flow statements. When a method is
first defined with the “def” keyword, it skips the lines of code, similar to
skipped loops, except it also stores all the lines in a Method object as they
are encountered. Methods are stored at the interpreter level in which they
are defined, as are variables. Since both methods and loops store lines of
code that will be replayed later, they function similarly in the interpreter.
However, when statements for a loop are encountered for the first time, they
are both run immediately and stored, while the statements in a method
are merely stored and are not run until the method is called. In addition,
the lines of code for a loop disappear immediately after a loop terminates,
while lines of code for methods can only be run after its definition. When
a method is called, a new interpreter is created and the stored statements
are then run. Another major difference between loops and methods is the
presence of parameters. The actual parameters that are passed to a method
are assigned to variables in the method’s interpreter with the same names as
the parameter names in the method definition.

13

2.7 Future Stages

One feature that I expected to add before the project’s completion was classes
and objects. However, I found enough faults in the interpreter, especially
with methods, that I decided to wait to add classes. I felt that the inter-
preter needed a complete refactoring before classes could be added, and if
they were added to the current version of the interpreter, the resulting code
would be incredibly difficult to debug. Since refactoring the interpreter may
prove to be a significant task, it is the barrier to many of the features I would
like to add to the interpreter. Most future features will require the concept
of objects to be in place because of the design philosophy I am seeking.

Two examples of features that would require the presence of objects are
graphics and networking capabilities. Although these features could poten-
tially follow a procedural model, I feel that this is an outdated approach and
is not a good model to follow when considering programming conventions
today.

I did some research into OpenGL |[1]| as preparation for adding graphical
capabilities to the language. After building test applications in C+—+ for
desktop machines, T made a couple of proof-of-concept Android programs
that utilized OpenGL for 2D drawing. When I reach the point of adding
graphics to Wolfscript, it will likely use OpenGL.

I also want to eventually add a package/import system, so that both Java
and Wolfscript libraries can be imported to applications. This way, features
such as networking will not be included as an overwhelming amount of de-
fault functions in Wolfscript.

Some Android-specific features would access capabilities unique to mobile

devices, but besides those, I intend all libraries to work the same on the
computer as on phones or tablets.

14

Chapter 3

The IDE

3.1 Design Philosophy

When I first decided that I wanted to make it easier to program on a mobile
device, I considered the two major disadvantages of mobile devices. First,
phones and smaller tablets have a very limited amount of screen real estate to
display a program. No matter how high-resolution the screen, the fact that
the device is small makes it difficult to view small details and to select things
using a touchscreen. Second, touchscreen keyboards can be difficult to use,
and typing uncommon symbols requires drilling down via several modifier
keys.

Considering these problems, I sought to design an IDE that would reduce
typing and would save screen space when possible. To do this, I decided to
avoid the traditional plain-text editing environment and made every line be
represented internally as an object. This made it possible for the IDE to
recognize different types of lines, color-code them accordingly, and represent
them in alternate ways.

I designed the IDE to have colorful, distinctive buttons to reflect the feel
of Scratch or Alice, which have color-coded draggable code blocks. However,
I wanted my code buttons to have an obvious connection to the underlying
code, and I wanted the lines to not restrict choices as a compromise for sim-
plicity. Therefore, expressions themselves are still typed.

In order to make a compromise for small screens, I originally made it very

difficult to obtain a big-picture view of a program by making it impossible
to view nested code blocks alongside each other. I did this so that each

15

code block would have a reasonable number of buttons and the line count
would not become overwhelming. However, this did cause some issues with
navigation, so I added a button that allowed a user to expand the code
inside a control flow statement as read-only. This allowed the child code to
be smaller than it would need to be if it was editable.

3.2 Features

The IDE provides color-coded line types for expressions(gray), assignments(gray),
comments(green), if/elseif /else(light blue), while/for(dark blue), def(yellow),
and ret(orange). Each line type has a dialog window that reflects the inputs
required for that line. For example, an assignment dialog window has two
fields: the first is the variable name, and the second is the value to be as-
signed.

Every line in the IDE is represented as a button, and each line is placed
in a vertical list of buttons. Pressing a button brings up a dialog allowing the
line to be edited. However, control statement objects have a list of lines as
their children, and in these cases pressing the button instead changes the view
to a list of the children. This allows buttons to take up more space than a
line of text normally would without occupying a massive amount of space. It
also means that the buttons do not have to reflect scope through indentation.

When lines are edited, the text that sets that line type apart from the
others (such as "if" for an if statement) is automatically inserted, meaning
that users only have to enter the expressions they need to, without typing
any boilerplate code.

An interactive terminal is also included in the IDE. It allows for quick
code entry when a problem is too simple to require a program. The terminal
can be used as a calculator, and it will be useful for the early stages of teach-
ing the language. Students can immediately see the results of their efforts,
making it easier to explore concepts.

The IDE has a built-in file browser that I originally wrote as an experi-
ment before starting this project. It allows users to create and rename files
or folders and save and load program data. The application will load all files,
regardless of extension. If the IDE finds a defect in a program that makes
it impossible to correctly load the program, it will display an error message
showing the offending line.

16

3.3 Future Features

I intend the IDE to eventually keep track of all variables and methods that
have been defined. This may end up sharing code with a refactored in-
terpreter, because the IDE will essentially be performing the first step of
interpreting the code. Keeping track of the variables will allow the IDE to
quickly suggest variable names for expressions. Each text field in line dialogs
will have a button that will provide a quick shortcut to existing variables,
built-in functions, and methods.

The current method of inserting and moving lines of code is stiff and
somewhat cumbersome. I intend to add line cutting, copying, and pasting,
as well as the ability to change a line’s type if it has children. This way, an if
statement could be converted to a while loop without having to cut the code
inside the former and paste it after the latter is created. I may also look into
the ability to drag lines up and down to change their order by inserting a
small strip along the right side of each code button.

17

Chapter 4

Educational Use

4.1 The Language

Throughout the previous sections, I have emphasized the educational poten-
tial in both the language and the IDE. I feel that the most important reason
that the language can be educational is its simplicity. If something is simple
to use, then learning it should come naturally. Therefore, instead of trying
to find some sort of educational gimmick, I decided to reduce complexity as
much as possible while reducing functionality as little as possible.

Classes that use languages such as Java or C++ have students write boil-
erplate code such as Java’s "public static void main(String|| args)" before
students are capable of understanding the purpose of such statements. In
addition, console input and output are neither simple nor consistent. Pro-
gramming students should not have to focus on the strange intricacies of
language syntax. A much more important focus for a student of program-
ming is language-independent programming concepts. With Wolfscript, I
tried to make the language’s syntax simple and intuitive enough to not in-
terfere with teaching programming concepts.

The calculator focus at the lowest levels of the language allows it to
respond similarly to a graphing calculator for basic calculations, and the in-
teractive terminal allows users to type in expressions without assigning them
to anything. This means that they can begin getting hands-on experience
with Wolfscript with minimal prior experience.

18

4.2 The IDE

Installation and use of the IDE is straightforward. Once the application is
placed on the market, users will be able to download it straight to their de-
vices and immediately begin using it.

The bold, color-coded visuals of the IDE should make it easier to recognize
different blocks of code, and the removal of the need to remember language
syntax will make it easier to focus on program logic. Since each line type
automatically inserts the keywords, all students have to remember is variable
names and how to write expressions. Also, by automatically omitting the
need to type end statements, students will not need to worry about the
"mismatched curly braces" problem often encountered when learning other
languages.

19

Part 11

Beginner’s Guide

20

0.1 Introduction

What is Wolfscript? Wolfscript is a simple and straightforward programming
language designed to be easy to learn and to be programmed directly on
Android devices. Wolfscript has been designed for ease-of-use and simplicity,
even for those unfamiliar with programming.

Why learn Wolfscript? Because it’s easy! If you are just learning to
program, Wolfscript offers a simple, easy-to-learn way to program on the
go, and if you already have experience programming, you should be able to
learn most of Wolfscript in a day. What’s great about Wolfscript is that you
only need an Android device to write programs, and there is no need for an
internet connection to run programs. So next time you find yourself with
nothing to do and your phone in your pocket, practice making games instead
of playing games!

21

Chapter 1

Learning the Basics

1.1 Using the Interactive Terminal

The interactive terminal is basically just a command prompt or console that
you can type expressions into, and the terminal will respond back with the
results. In order to run the interactive console on your Android device, press
the “Interactive Terminal” button at the main menu. When in the interactive
terminal, enter text into the text field and submit it using the “submit” button
or by pressing enter.

1.2 Calculator

Wolfscript has an interactive terminal mode that should be very familiar
to anyone who has used a scientific calculator. The interactive terminal is
a perfect place for someone with no programming experience to start. It
behaves very much like a calculator and can even be used as one.

1.2.1 Expressions

Let’s begin with something very simple. In the interactive terminal, type
2+2

and hit enter. The terminal should return to you the obvious answer 4.
Try a few more expressions! Wolfscript supports complex expressions with
nested parentheses, such as

5% (2+3/5)

22

with full support for order of operations. The numerical results of these
expressions are exactly what you would expect: the exact value that you
would get if you used a calculator. Wolfscript supports many operators,
some of which you may or may not have used before. Not familiar with some
of these operators? We will come back to some of them later, especially the
logical operators and comparisons. Here is a table of the operators and what
they are, arranged by decreasing precedence:

| Operator(s) | Description

() grouping subexpressions together
! - factorial and unary negative (NOT subtract)

&, logical AND and OR

<, >, ==, <=, >=, <> | less than, greater than, equal, less than or equal to,
greater than or equal to, not equal
* /% multiplication, division, and modulo (remainder)
+, - addition and subtraction

1.2.2 Assignments

Simple expressions are easy. However, it is important to note that these
expressions merely are equal to a certain value; they do not do anything (with
the exception of setting the “ans” variable discussed in the next paragraph).
In order to store the result of an expression for future use, you must assign
the value to a variable. This can be compared to the M+ button on a basic
calculator, except variable assignment is far more powerful and versatile.

Wolfscript adopts a few conventions from graphing and scientific calcula-
tors, and one convention it borrows is an “ans” variable. This variable always
contains the value of the last calculation. For example, if you entered the
lines

2+2
ans*5

you would get 20, because after the 242 line, ans was 4. After the ans*5
line, ans is 20.

You can assign your own variables instead of relying on ans. Although
you can assign variables on graphing calculators, many of them do not allow
you to name them. However, here you can name the variable almost any-
thing you want, provided it is not reserved for use somewhere else.

23

‘ Rules for Variable Names

Variables cannot contain spaces

Variables cannot contain operators such as + or *

Variables cannot be identical to words that Wolfscript uses for special purposes

Variables CAN have uppercase or lowercase letters

Variables CAN contain characters that are not reserved such as _ (underscore)

Try this:

a = 2+2
b = at+2
a+b

Now, a is 4, b is 6, and ans is 10. Besides assigning a value to ans, the
line a+b did not do anything, unlike the other two, which explicitly assigned
the value “2+2” to a and then “a+2” to b. It is important to emphasize that
the equal sign in this case is not declaring an equation but rather putting the
value on the right into the variable on the left. When writing an assignment,
you should always have a variable on the left and an expression on the right.

What is a variable? It is essentially a container for a value that has a
convenient name for referencing it. Therefore, you should name variables
something intuitive and relevant to the problem at hand. For example, if
you are keeping track of the number of cats for something, you might name
a variable “numCats” or “cats”

cats = 77

Now I can always check how many cats there are by looking at cats.

1.2.3 Arrays (Lists of Numbers)

If you hear the word array, you may feel somewhat intimidated. What is an
array? Well in this case it is just a list of numbers that can be accessed by
referring to where they are in the list. It can be very convenient to have a
list of numbers that you can refer to in this manner. Let’s take a look at an
array:

[2,4,8,1]

If you type this into the interactive terminal, you will get the same thing
back as a result. All you have done is said “I have this list of numbers. They
are 2, 4, 8, and 1.” Wolfscript has basically said, “Ok.” So let’s actually do
something with this array. Let’s use what we learned about variables and
assignments to put this array into a variable so we can use it:

24

myArray = [2,4,8,1]

The variable name “myArray” has no particular significance. You can
choose any name you wish. Now, we have an array, and we have saved it as
myArray. How can we access the numbers in it?

First, there is a very important property of arrays to understand. The
values in arrays are not numbered from 1, but instead from 0. Why? It can
make math more straightforward in certain circumstances, and it has been
a programming convention for years. Regardless of the reasons, this means
that the number 2 in myArray is in “slot” number 0. Instead of using the
terms slot or location, we will use the term index. Here is a representation
of the array:

Index || 0|12
Value || 2 |4 |8 | 1

Therefore, in myArray, the number at index 3 is 1, and the number at
index 1 is 4. Let’s access one of these numbers!

myArray [2]

This accesses the value at index 2, which is 8. Now let’s change the value
to something else!

myArray[2] = 9001

Remember, for assignment, a variable must be on the left. In this case, the

variable is myArray, and we are modifying its second index. Now, myArray
looks like this:

Index || 0|1 2 3
Value || 2 |4 | 9001 | 1

Let’s say we need another slot in our array. If we need another number,
we need a bigger array. No problem! Simply assign the new index a value:

myArray[4] = 9

The array is expanded and now includes that value:

Index || 0| 1 2 314
Value || 2 1419001 [1|9

What happens if we expand it by more than 17

25

myArray[8] = 2

The array expands, and the values at indices 5, 6, and 7, which we never
defined, become zero by default. This is something to remember for conve-
nience.

Index O 1| 2 |3]4|5|6|7|8
Value |2 1419001 ({1900 |02

Notice that the array can contain duplicates.

Arrays may not seem useful now, but if you do any significant amount of
programming, you will find out how useful they can be.

Another fact to take note of is that an array can contain more than just
numbers. It can also contain more arrays! We will come back to this later.

1.2.4 Equality and Booleans

Sometimes you want to know if an expression is equal to another expression,
or maybe you want to know if it is greater or less than the other. In this case,
conditionals are very useful. For example, if you wanted to know whether
2-+2 was equal to 8/2, you could enter

2+2 == 8/2

This is asking Wolfscript whether 2+2 is equal to 8/2. However, what is
the value you get back? If you enter this into the interactive terminal, you
get

1

which may seem puzzling. However, the computer needs to answer in a
consistent way. If it were a person, it might respond “Yes, 2+2 is equal to
8/2.” However, that is a bit inconvenient for a computer, so we have to use
something a bit simpler, if possibly more confusing at first sight. This is
made more clear if you enter

242 == 42

and get

26

Since 4 is not equal to 42, 0 must mean “no,” or more accurately “false.”
Likewise, 1 must meant “yes,” or more accurately “true.” As a matter of
fact, many programming languages do use true and false in situations such
as this, and they are known as booleans. However, Wolfscript tries to keep
everything as a number if possible, and thus 0 is treated as false, and every
other number is treated as true.

You can check for more than just equality. Here is a list of ways to com-
pare values:

‘ Symbol ‘ Comparison ‘
== equal
> greater than
< less than
<= less than or equal
>= greater than or equal
<> not equal

You may wonder under what circumstances you would want to check if
an expression was true. The best example for this is if statements, which are
indispensable for programming. We will discuss these shortly.

1.3 Simple Programs

1.3.1 Writing Your First Program

Up until now, we have been looking at the interactive terminal, but in order
to write real programs, you want to be able to save your program in a file so
that you can run a sequence of commands. While the interactive terminal is
like a calculator, writing a program is like automating all the commands you
were giving to the calculator.

This will assume you are using the Android-based WolfscriptIDE, but if
you are not, you can type the programs in a text editor.

For your first program, you are going to create the classic “Hello World”
program. All it does is prints out the words “Hello world,” and it is often used
as the first program one writes when using a new programming language.

First, create a new program, and then press the “+ Add Line” button.
Choose the “Expression” option and type

outs "Hello world!"

Press “OK” and then press “Run.”
Congratulations! You just wrote your first program!

27

1.3.2 Input and Output

In the last section, we displayed the words “Hello world!,” but how did we
do that? Let’s look closer at how to display words and numbers, as well as
allowing the user (the person running your program) to input values.

You can display words by using the command outs, used like this:

outs "These words will display."
or, if you want to display words from a variable,

words = "Hello! These words will also display."
outs words

To just display a number, use out:

abc = 4
out abc

This will display the value of abc. Remember that if you don’t use quotes
when displaying words, Wolfscript will think you are wanting to display a
variable, and if that variable does not exist, your program will not work.

In order to input values, use in() like this:

userInput = in()

Now, the user’s input is stored in variable userInput. Simple! Note that
it is a good idea to prompt a user for input before using in() so that the user
will know that they are supposed to enter something and what it is supposed
to be.

1.3.3 Comments

Sometimes you will want to tell either yourself or someone else what you are
doing in your program. This is what comments are for, as they allow you
to say things that the computer would not understand. They are essentially
asides directed at yourself and others that the computer completely ignores.
To make a comment in Wolfscript, start a line with a #, like this:

#This variable will track the number of cats in the house
cats = 70000

28

As you can tell, the comment explained the use of the variable for another
person. By convention, it is discouraged to write comments for things that
are self-evident, such as

#Set cats to 70000
cats = 70000

because it is quite obvious that the line does that. Keep in mind that
comments can be a powerful tool if used correctly, but if they become redun-
dant, they will be useful to nobody.

1.3.4 If Statements

Here is what an if statement looks like:

if num ==
#Contents of the if statement go here
end

Before we begin to use if statements, recall the section "Equality and
Booleans." If the variable num is indeed equal to 5, then num==5 will eval-
uate to 1. If it is not, it will evaluate to 0. The if statement will run the lines
between its start and end if the expression after if evaluates to a number that
is not zero, and if the expression does evaluate to zero, we jump to the end
of the if statement.

num = 4

if num ==
#The code here is skipped because 4 is not equal to b5
#4==5 evaluates to O

end

num = 5

if num ==
#The code here is run because 5 is equal to 5
#4==5 evaluates to 1

end

As you can tell, this allows you to choose whether certain code runs or
not, which is very useful.

Something to note is that, when using the Android IDE, you will not
have to worry about the closing "end" line, as they are automatically added.

29

All you have to do is add the if statement’s condition, and it does the rest.
There is a specific section that goes into using the IDE in more detail.

There is more to if statements than simply an ordinary if. Wolfscript
also contains elseif and else. Elseifs and elses only run if the preceding if (or
elseif) did not:

num = 4
if num ==
#The code here is skipped because 4 is not equal to b5
#4==5 evaluates to O
elseif num ==
#The code here is run because 4 is equal to 4
#4==4 evaluates to 1
elseif num > 3
#The code here would have run if the previous elseif had not
else
#This would have run if the if had not run
#and none of the above elseifs had run
end

Note that the elseifs replace the "end" normally at the end of an if state-
ment. You can have as many elseifs as you want, but only one if and one else
can be attached to them. To have an elseif, you must start with an if, and
an else requires at least an if. An else is always optional:

#The following is valid

num = 4

if num ==
#The code here is skipped because 4 1s not equal to 5
#4==5 evaluates to 0

else

#This code is run because the if did not run

end

#The following is valid

num = 4

if num ==
#The code here is skipped because 4 is not equal to b5
#4==5 evaluates to O

elseif num > 5
#This code is also skipped because num > 5 evaluates to O

30

end

#The following is INVALID
num = 4
elseif num ==
#You cannot start with an elseif
end

#The following is INVALID
num = 4
else
#You cannot start with an else
end

#The following is INVALID

num = 4

if num ==
#The code here is skipped because 4 is not equal to b5
#4==5 evaluates to 0O

else
#You cannot have two elses attached like this.

else
#An else is always terminated by an "end," because it is what
#runs when all the other conditions do not.

end

Here is an example of an if statement in action:

num = 1
if num < 5

num = num+1
end

When the code runs, num is incremented by 1 because it is less than 5

Exercise 1

Write a program that asks for the user’s age, and then prints out a different
message for several different age ranges. A sample solution is at the end of
this document.

31

1.3.5 Loops

Sometimes you want to perform a similar task multiple times. Fortunately,
loops allow you to perform a task an arbitrary number of times without
typing it over and over. They behave very similarly to if statements; they
only will run if the provided expression evaluates to a nonzero value. Let’s
start with while loops:

num = 5

while num > 0
num = num-1

end

This while loop runs 5 times, subtracting 1 from num every time.

‘ run ‘ num ‘ num > 07 ‘ Does the loop run? ‘

1 5 yes yes

4 yes yes
3 3 yes yes
4 2 yes yes
5) 1 yes yes
6 0 no no

Since a loop will run until the condition is zero, a loop such as

while 1
#This loop will never terminate
end

will run forever, or until the program is forcefully terminated. Try to
avoid infinite loops. It may not always be so obvious that a loop’s condition
does not allow it to terminate.

The other type of loop in Wolfscript is the for loop. For loops are similar
to while loops, and a while loop can always be used where a for loop is used.
They are simply more convenient than while loops in certain situations.

For loops have three parts, separated by semicolons:

for i =5; 1>0; i=1i-1
#Contents of for loop
end

This for loop actually does the same thing as the first while loop shown:
it counts down from 5 to 0 and stops. Let’s take a closer look at each part.

32

1=5

The first part is used for initialization; it is run once at the beginning of
the first loop. Therefore, we now have a variable named "i" with a value of 5.
By convention, the letter "i" is often used in for loops, but this initialization
can take the form of any expression or assignment.

1>0

The second part is the same as the condition for the while loop; it is used
to determine if the loop will run. It runs immediately after the initialization
code is run when the for loop is first started, and it then runs immediately
before each run to determine if the loop will run again.

1= 1i+1

The third part is the code that runs after each loop. You can think of
it as a line of code that is automatically appended after the last line of the
loop.

As another example of loops, here is a for loop that prints out the numbers
25 through 50:

for i = 25; i <= 50; i++

out 1i
end

A Quick Shortcut: ++ and - -
In the for loop example, variable i was incremented using the code
i= i+l

but there’s a shorter way to write this. You can instead type
i++

for the same result. Think of it as shorthand for the same thing. In
addition,

i--

subtracts one from a variable. This is a common feature in many lan-
guages.

33

Exercise 2

Write a program that accepts a number from the user and then counts up
from 1 to that number. Have the program print out the number each iteration
of the loop so it visually counts up. For example, if the user entered 4, the
output would be:

Enter a positive number:

B W N = D

The first 4 is the user’s input, and the rest of the numbers are from the
loop.

1.3.6 Methods

Sometimes you will find yourself wanting to reuse code you have written.
Fortunately, you don’t have to just copy the code over and over. Instead, you
can store it in a method, where it can be run over and over from other places
in your code! A method is a block of code that has been packaged together
under a name so that it can be called at any time. Different languages may
call this code structure different things, such as subroutines or functions, but
the important thing to remember is the concept behind it.
Methods are defined like this:

#This method merely prints out "Hello World!" when it’s called
def hello()

outs "Hello World!"
end

This method, which prints out "Hello World!" when run, does not do
anything when defined besides store itself for later use. All you are doing
when defining a method is telling Wolfscript that you have a block of code
that you will want to use later.

To call this method, simply write

#"Hello World!" will be printed
hello()

34

All methods return values so that they can be part of mathematical ex-
pressions. You can use the "ret" keyword to specify what value to return.
To give an example,

#This rather useless method always returns 42.
def giveMe42()

ret 42
end

#When this is called, 42 is printed out.
out giveMe42()

What does it mean when a method "returns" a value? It simply means
that the method call (e.g. giveMe42()) is replaced with the value it returns
after it is run. Therefore, if you typed

giveMe42()+5

into the interactive terminal, it would result in the expression 42-+5, which
would give you 47.

You may be asking why there are parentheses at the end of the method.
That is because methods allow for more functionality than simply being
called. You can also give variables to them so that you can perform different
operations on them. For example, let’s say that you wanted to write a method
to add two numbers:

#This is not recommended since + is a faster and shorter way,
#but this is important for explaining the concept.
def add(a,b)
ret a+b
end

#Prints 4

out add(2,2)

#assigns 7 to num

num = add(2,5)

#Prints 8, which is num+1
out add(num,1)

Methods can contain more than one "ret" statement, but they will stop
running as soon as one is encountered. Combining methods with if statements
allows for the possibility that one of several "ret"s will be run. For example,
here’s a method that returns 1 if the variable passed to it is greater than
9000 and 0 otherwise:

35

#Returns 1 if a > 9000. Returns 0 otherwise.
def large(a)

if a > 9000

ret 1

else

ret O
end

#Prints 1

out large(9001)
#Prints O

out large(2)

Methods will also return the value of the last line of the method if no
"ret" is encountered first.

Wolfscript Functions

Wolfscript already has some built-in methods that are needed for basic func-
tionality. However, to keep these distinct from user-made methods, they are
called functions. There is no reason for this other than for clarity. You have
already used the in() function, which allows for console input. However, there
are several others. There is a list of them at the end of this document, and
several will be mentioned in future sections as they are needed.

Exercise 3

Write a method that determines if the one parameter passed to it is even
or odd. If it is even, return 0. If it is odd, return 1. Add a few lines that
run the method to test it. (Hint: using modulus, which is represented by %,
can help determine whether a number is even or odd. If you need help, read
about remainders.)

1.3.7 Arrays Revisited

Now that you have learned about loops and methods, it is time to discuss
the power of arrays. As mentioned at the end of the first arrays section,
an array can contain arrays as values. This allows for "multidimensional
arrays, which are very useful. Here is an example of a multidimensional array

being defined:

arr = [[2,4],[5,6]]

36

This array contains two smaller arrays, both of length 2. However, arrays
can contain a combination of both numbers and arrays of varying lengths:

arr = [709,[2,4,6,8],[19,29],[20]]

Sometimes you will want to know the length of an array. For this, Wolf-
script has a built in function: len(). Just pass in the array’s name as a
parameter, and it will return the length.

Here is a for loop that prints out the contents of an array:

myArray = [1,1,2,3,5]

for i = 0; i < len(myArray); i++
out myArray[il

end

Exercise 4

Write a method that, when given two arrays of numbers, will return an array
containing the sums of the numbers in the corresponding indices up to the
length of the shorter array. For example,

arrl = [2,4,6]

arr2 = [7,8]

answer = addArr(arrl,arr?2)
out answer

would print |9, 12|, because 2+7 is 9 and 4+8 is 12. The 6 is never added to
anything because there is no corresponding number in arr2.

37

O~ O Ut W

— ==
N = OO

13

15

Gt W N

Chapter 2

Beginner’s Guide Appendices

2.1 Sample Answers to Exercises

Exercise 1

outs "What is your age?"
age = in()
if age < 18 & age >= 0

outs "You are too young to vote in the US."
elseif age < 65 & age >= 0

outs "You are of a working age and can vote."
elseif age < 100 & age >= 0

outs "You are either retired or are approaching retirement age."
elseif age < 150 & age >= 0

outs "You are incredibly old."
elseif age < 5000 & age >= 0

outs "You are older than is physically possible. I suppose you could be
a tree."
else
outs "Liar."
end

Exercise 2

outs "Enter a positive number:"
num = in()
for i = 1; i <= num; i++
out 1
end

38

O~ O U W N

— = = =
Tl W NP OO

© 0o ~J O Ut W

D = = = s e = = e
S O WO U WNHO

Exercise 3

def evenOr0dd (num)
if num%2 ==
ret 0
else
ret 1
end
end

#0utput should be 1, 0, 1, 0, 1, 0
out even0r0dd(5)

out evenOr0dd(2)

out even0Or0dd (1)

out evenOr0dd (42)

out even0r0dd(709)

out evenOr0dd (0)

Exercise 4

def addArr(al,a2)
shorter = len(al)
if(len(a2)<len(al))
shorter = len(a2)
end

#Create an empty array that we will fill with sums
sum = []

for i = 0; i < shorter; i++
sum[i] = a1[il+a2[i]
end

ret sum
end

arrl = [2,4,6]

arr2 = [7,8]

answer = addArr(arrl,arr2)
out answer

2.2 Wolfscript Keywords

In Wolfscript, keywords do not need parentheses after their use if they accept
any parameters.

39

‘ Keyword H Parameters Use

clr variable name Remove a specific variable from the interpreter.

clrloc nothing Remove all variables from the current interpreter
(not its parent).

loc nothing Display a list of all variables in the current inter-
preter (works in interactive console only).

met nothing Display a list of all methods in the current inter-
preter (works in interactive console only).

frac nothing Display the fractional value of ans (works in inter-
active console only).

out expression Print out the value of the expression to the console.

outf expression Print out the fractional value of the expression to
the console.

outs expression Interpret and print to the console the string rep-
resentation of the expression.

end nothing End a code block started by if, while, for, or def.

ret expression Return the value of the expression as the return
value of the method this ret is in.

status nothing Print some debug data (works in interactive con-
sole only).

if expression Execute the code after this line up to a closing
end or elseif or else if the expression evaluates to
anything that is not 0.

elseif expression Execute the code after this line up to a closing
end or elseif or else if the expression evaluates to
anything that is not 0 unless an if or elseif has
already executed.

else nothing Execute the code after this line up to a closing end
unless an if or elseif has already executed.

while expression Execute the code after this line up to a closing
end and continue looping as long as the expression
evaluates to anything that is not 0.

for expressionl; expres- | Execute expressionl immediately. Then execute

sion2; expression3 the code after this line up to a closing end and

continue looping as long as expression2 evaluates
to anything that is not 0, executing expression3 at
the end of every loop.

def methodName(paraml, | Store the code after this line up to a closing end

param?2, ... , paramN) | under the name methodName. Save all parameter

names as the variable names for the values that
will be passed when the method is called.

40

2.3 Wolfscript Functions

Wolfscript functions look similar to user methods when used.

Function H Input

\ Output

\ Use

number

number

Find the sine of a degree in radians.

number

number

Find the cosine of a degree in radians.

number

number

Find the sine of a degree in radians.

number or array

number

Find the length of an array. If a number
is passed, the result is -1.

nothing

number or array

Accept input from the user.

number or array

array

Return the string representation of
a number (e.g. 2—[50]—="2" or
3/2—[49,46,53]—="1.5"). If an array
is passed, the same array is returned
without modification.

num()

number or array

number

Convert a string representation of a
number into that number. If the ar-
ray values or number do not represent

the ASCII values of numbers (48-57),
then behavior is undefined.

time()

nothing

number

Find the current system time
in milliseconds since January 1,
1970. Equivalent to Java’s Sys-
tem.current TimeMillis().

str()

number or array

array

Return the string representation of a
number, except the representation is
in fractional form instead of a trun-
cated decimal (e.g. 2—[50]—"2" or
3/2—[51,47,50|]—"3/2"). If an array
is passed, the same array is returned
without modification.

eq()

number or array,
number or array

number

Determine if the two parameters are
equal. Returns 1 if they are. Returns 0
if they are not. Arrays cannot be equal
to numbers and a combination will al-
ways return 0.

41

2.4 Wolfscript Exceptions

These are the potential exceptions you may encounter if you make a mistake

in your code.

‘ Exception

H Possible cause

Unparsable expression

The expression entered may contain a variable that
does not exist, or may have operators in invalid
places.

Index out of bounds

A request for a value in an array has an invalid
index, or you may be trying to assign a value to a
negative index.

Variable is not an array

You may be treating a variable that is not an array
as an array (such as trying to obtain a value from
an index when the variable is a number).

Division by zero

Dividing by zero is not allowed.

Invalid array declaration

The definition for an array may have mismatched
brackets. This may also show up for Strings since
they are stored as arrays.

an unknown error has occurred

Wolfscript has no idea what went wrong. Report
these errors so they can be fixed!

42

Part 111

Bibliography

43

Bibliography

1]

2]

131

4]

[5]

6]

|7l

Edward Angel. Interactive Computer Graphics: A Top-Down Approach
with Shader-Based OpenGL (6th Edition). Addison-Wesley. 2011.

Google. Android developers. http://developer.android.com/index.
html Retrieved May 6, 2013.

MIT Media Lab. Scratch. http://scratch.mit.edu/ Retrieved May 6,
2013.

Mark Murphy. Android Programming Tutorials: Fasy-To-Follow
Training-Style Exercises on Android Application Development. Common-
sWares. 2009.

Mark Murphy. The Busy Coder’s Guide to Advanced Android Develop-
ment. CommonsWares. 2011.

University of Kent. Greenfoot. http://www.greenfoot.org/home Re-
trieved May 6, 2013.

Carnegie Mellon University. Alice. http://www.alice.org/index.php
Retrieved May 6, 2013.

44

http://developer.android.com/index.html
http://developer.android.com/index.html
http://scratch.mit.edu/
http://www.greenfoot.org/home
http://www.alice.org/index.php

	I Wolfscript
	Introduction
	Why Wolfscript?
	Before Wolfscript

	The Interpreter
	Overview
	Calculator Stage
	Variables Stage
	Arrays Stage
	Control Flow Stage
	Methods Stage
	Future Stages

	The IDE
	Design Philosophy
	Features
	Future Features

	Educational Use
	The Language
	The IDE

	II Beginner's Guide
	Introduction
	Learning the Basics
	Using the Interactive Terminal
	Calculator
	Expressions
	Assignments
	Arrays (Lists of Numbers)
	Equality and Booleans

	Simple Programs
	Writing Your First Program
	Input and Output
	Comments
	If Statements
	Loops
	Methods
	Arrays Revisited

	Beginner's Guide Appendices
	Sample Answers to Exercises
	Wolfscript Keywords
	Wolfscript Functions
	Wolfscript Exceptions

	III Bibliography

